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Bifurcation in steady laminar flow through curved tubes 

By K. N A N D A K U M A R  A N D  JACOB H. MASLIYAH 
Department of Chemical Engineering, Univcrsity of Alberta, 

Edmonton, Alberta, Canada 

(Received 10 April 1981 and in revised form 10 December 1981) 

The occurrence of dual solutions in curved ducts is investigated through a numerical 
solution of the Navier-Stokes equations in a bipolar- toroidal co-ordinate system. 
With the shape of duct being the region formed by the natural co-ordinate surfaces, 
i t  was possible to alter the duct geometry gradually and preserve the prevailing form 
of the velocity field, in a manner suggested by Benjamin (1978). 

I n  addition to the Dean number Dn = Re/R%, a geometrical parameter that  
defines the shape of the duct was also varied systematically to study the bifurcation 
of a two-vortex solution into a two- and four-vortex solution. Dual solutions have 
been found for all geometrical shapes investigated here. Of particular interest are the 
shapes of a full circle and a semicircle with a curved outer wall. 

1. Introduction 
Laminar flow in curved ducts has been studied quite extensively for various duct 

cross-sections. These include circular tubes (Dean 1928; Austin & Seader 1973; Collins 
& Dennis 1975; Tarbell & Samuels 1973; Van Dyke 1978; Dennis 1980; Lin & Tarbell 
1980; Manlapaz & Churchill 1980), elliptical tubes (Cuming 1952), square and rect- 
angular tubes (Cheng & Akiyama 1970; Cheng, Lin & On 1976), triangular tubes 
(Collins & Dennis 1976~1, b), and semicircular ducts (Masliyah & Nandakumar 1979; 
Masliyah 1980). With the exception of Manlapaz & Churchill (1980), all previous 
analyses have been limited to coils of zero pitch. In  addition, several authors, including 
Dean (1928), Van Dyke (1978) and Dennis (l980), have used the loose-coiling approxi- 
mation. This enables the grouping of the two independent parameters, viz Reynolds 
number Re, and the radius of curvature R, into one single parameter. This parameter 
has been called the Dean number and defined variously in the literature. We use the 
definition, Dn = Re/R$. If a numerical procedure is used to solve the equations of 
motion, as in the present case, no specific advantage is gained by invoking the loose- 
coiling approximation. Hence the full Navier-Stokes equations will be solved in this 
work. 

The bipolar-toroidal co-ordinate system is shown in figure 1. As long as the zero- 
pitch approximation is invoked, the equations of motion are invariant to reflection 
about the (x, y)-plane, indicating a symmetry in the flow pattern. 

It has long been established that the laminar flow in curved ducts is composed of a 
main flow in Dhe axial direction with a superimposed secondary flow having two 
counter-rotating vortices. However, with certain geometries such as square and 
rectangular ducts (Joseph, Smith & Adler 1975; Cheng et al. 1976) or a semicircular 
duct with a flat outer wall (Masliyah 1980) an additional four-vortex secondary flow 
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FIGURE 1.  Bipolar-toroidal co-ordinate system. 

has been predicted. There has been some speculation about the influence of a flat 
outer wall in producing the additional four-vortex flow pattern (Alasliyah 1980). 

In  spite of considerable effort expended in solving the flow problem in curved 
circular tubes, a four-vortex solution has not been reported until now. It is our under- 
standing that recently Dennis & Ng (1982) and Ng (1980) have been able to  
obtain a four-vortex flow pattern for a full circle using a series-truncation method. 
In a recent paper Van Dyke (1978) presented a series solution to the equations of 
motion in a loosely coiled torus and cast doubt on the accuracy of all previous 
numerical solutions of Collins & Dennis ( 1  976), Austin & Seader (1973) and Truesdell 
& Adler (1970). Subsequently Dennis (1980) came to  the rescue of earlier numerical 
solutions by generating accurate solutions using grid-refinement and extrapolation 
methods. He further suggested that Van Dyke’s result could represent a different 
solution to the problem. 

The objective of this work is t o  study the bifurcation phenomena of flow in coiled 
tubes and, in particular, flow through tubes with curved outer surfaces. AS mas 
pointed out earlier, in addition to a two-vortex solution, a dual four-vortex solution 
was found t o  exist for flows in coiled ducts having a flat outer surface. It was hypo- 
thesized after Benjamin (1978) that, once a four-vortex dual solution is established, 
say, for a tube with a flat outer surface, then, using such a solution as an initial one 
and by gradually changing the geometry of the outer surface from a flat geometry to 
a circular geometry, i t  might be possible to conserve a four-vortex solution. In  this 
systematic manner we can establish whether a circular outer geometry will permit the 
existence of a dual solution having a four-vortex pattern. The bipolar-toroidal co- 
ordinates used in this study permit such a gradual change in the geometry of the outer 
surface. Consequently this study deals with the bifurcation phenomena with respect 
to flow and geometrical parameters. 

2. Governing equations 

viscous flow in a bipolar-toroidnl co-ordinate system (y,[, 4) are given below. 
The equations of motion in the stream-function vorticity form for a fully developed 
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Axial-momentum equation : 

Xtream-function vorticity equation : 

Vorticity-transport equation : 

The coefficients are given by 

fl sin(sinh7 (l-cos~cosIi7j7) 

f1fZ +? flfi c3 = f i + v ,  , 

""I (sin{sinhq)--(l-cos~cosliy)- avud , 
at. 

C5 = (1 - cos 6 cosh ?I), C, = sin csinli 7, f 4  f :  
f 2  f z  

f 2  flfi 
fi sin 6 sinh 7 1 - cos 6 cosh 7 

- %  f1fZ 
c7 = >-v, 

The metric coefficients for the bipolar-toroidal co-ordinate system are 

hc = h, = Gosh 7 - cos 6 ,  
cash 7 - cos 6 

h -  
+ - R,(cosh 7 - cos 6 )  +sin 6' 

The equations were rendered dimensionless as follows : 
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(1) 

The prime denot,es a dimensional quantity, and R' is the radius of t'he duct measured 
along 6 = 7~ and RL is the radius of curvature. 

The secondary velocities 7j:  and v, are given by 

16-2 
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and the axial vorticity is given by 

Because of symmetry about the co-ordinate 7 = 0 only the half-region 7 E [0 ,  m] will 
be considered. The transformation 

has been found to be useful in providing more grid points near the co-ordinate 7 = 0. 

7 = + ( e @ -  1) (9) 

The boundary conditions are 
( a )  axial velocity: 

v p  = 0 on wall, 

( b )  stream function: 
$ = 0 on a.11 boundaries; 

(c) vorticity : 
fdp = 0 along 7 = 0, 

o$ = 8 2 along 7 = constant. 
f 2  aT 

The friction coefficient CF is defined as 

and is computed from 

where D, = 4TI,/A, is the equivalent diameter, A, is the cross-sectional flow area, 
A ,  is the wetted wall-surface area/unit q5, V, is the wetted volume/unit 4, 

(18) Re = Db(v;S)/v = De(vq), 
and 7:v is the walI shear stress. 

the [direction of the Navier-Stokes equation to give 
The pressure gradient along the equator (7 = 0) of the tube can be deduced from 

ap _ -  - 2 - - - - -  aw, l a v ;  4 
a[ ap 2 i3( R,(I-cos~)+sin,$’ 

with all quantities evaluated a t  7 = p = 0. Integration of the above equation along 
6 gives 

where ti is the value of 6 at the inner surface. P and P, are the pressures a t  5 and a t  
the inner surface respectively. The pressure gradient along the tube surface is given by 
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Rc - Q  Shape 
10000 - Full circle, 

100 600000 Full circle, 

10 24 000 Full circle, 

100 1 OGOOOO Full circle, 

30 400 000 Semicircle, 

100 707 107 Full circle, 

two vortcx 

two vortex 

two vortex 

four-vortex 

two-vortex 

two-vortex 

Present Previous 
study study Difference 
GRe GRe % Reference 

1G.07 16.0 0.45 - 

24.05 23.92 0.54 Austin & Seader (1973) 

2G.11 26.192 0.25 Tarbell & Samuels (1973) 

27.41 27.26 0.54 Dennis & Ng (1982) 

20.88 20.89 0.05 Masliyah & Nandakumar 

25.21 24.736 1.9 Dennis (1980, 1981) 
(1979) 

TABLE 1. Comparison with otlier solutions (present solutions with 21 x 21 grid) 

(to is the value off; a t  the outer surface). When the radius of curvature R, is large the 
second term on the right-hand side of (20) becomes negligible. 

3. Method and accuracy of solution 
The governing partial differential equations ( 1 )-( 3) were discretized using central- 

difference approximations. The resulting algebraic equations were solved using the 
multigrid method. The details of the solution procedure could be found in Nandakumar 
& Masliyah (1981) and Brandt (1980). 

The bipolar co-ordinates are such that a semi-infinite domain must be spanned in 
the 7-co-ordinate direction. But the finite-difference method requires the selection 
of a finite domain. Choosing /3 = 3.0 (7 = 9.5428) spans most of the physical space 
with z = 0.99986 (as opposed to the exact value of 1.0). The region enclosed by the 
co-ordinates 7 E [O, 9.54281 and 6~ [0.5;rr, 1.5;rrI corresponds to a full circle, and choosing 
R, = 10000 simulates a straight circular tube. For this case the product C, Re was 
16.07 with a grid size of 21 x 21, which is within 0.45 yo of the exact value of 16. Five 
more examples, representing a variety of cases such as full and semicircles, two- and 
four-vortex solutions, are compared with the literature values in table 1. In  all cases 
the present solution agrees with the established values within 2 %. As a further check 
on the accuracy of the numerical solution, the total shear force was evaluated by 
integrating the wall shear stress r6+ a i d  7,/$. The friction coefficient was subsequently 

(21) 
computed from 

C, = 2(r,) D,/(vg)Re. 

The difference in the friction coefficient computed from (17)  and (21) was on the 
average about 3 yo. 

4. Results and discussion 
All the earlier workers studying the flow in curved circular and semicircular ducts 

have preferred the cylindrical-toroidal (i.e. ( r ,  O , $ ) )  co-ordinate system. Using this 
co-ordinate system, Masliyah ( 1  980) obtained dual solutions in a semicircular duct 
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with a flat outer wall. Using the same co-ordinate system Masliyah & Nandakumar 
(1979) failed to obtain a dual solution for a semicircular duct with a curved outer wall. 
The cylindrical co-ordinate system ( r ,  0) does not permit the geometry to be changed 
gradually from a semicircle to  a full circle and vice versa. The four-vortex solution 
found in a semicircle with a flat outer wall is not preserved when the geometry is 
changed abruptly to a full circle. However, in a bipolar co-ordinate system semicircular 
and circular geometries are obtained as special cases, and in addition it is possible to  
make a gradual change from one geometry to the other. 

Inspired by the work of Benjamin (1978), who studied bifurcation of Taylor vortices 
with respect to a geometrical parameter and a flow parameter, the present problem 
was formulated in a similar manner. The state function characterizing a solution was 
chosen as C, Ri. The geometrical parameter was chosen as the co-ordinate values of 
the inner (&) and outer (to) surfaces of the duct in a bipolar co-ordinate system. The 
Dean number was used as the flow parameter. 

A semicircular duct with a flat outer wall was considered first, because Masliyah 
(1980) found that it was fairly easy to establish the dual solution for this geometry. 
Starting from a converged two-vortex solution, the four-vortex solution was obtained 
by perturbing the flow significantly (i.e. by increasing the Dean number by a large 
amount). The four-vortex solution was then preserved by gradually changing either 
the Dean number or the shape of the inner and/or outer surfaces of the duct. 

The state function C, R$ is shown as a function of to and Dn in figure 2 .  The radius 
of curvature R, was chosen as 30 for all cases. The inner wall of the duct was chosen 
as a semicircle (i.e. ti = 1 . 5 ~ ) .  The shape of the outer wall was changed gradually 
through several moon-shaped configurations (to = 1.05;rr, ;rr, 0 - 7 5 ~ ,  0 . 6 ~ )  t o  a full 
circle (to = 0 . 5 ~ ) .  For each fixed outer configuration, the Dean number was varied 
up to  170 in order to  generate the surface of the state function. I n  all cases a two- 
vortex solution was found to bifurcate into a two- and four-vortex solution above a 
Dean number of about 100. Hence i t  is clear that the shape of the outer wall does not 
play a crucial role in determining the type of solution. It does, however, play a role 
in determining the region of attraction of the four-vortex solution. It was much easier 
to obtain the four-vortex solution when the outer surface was almost flat. The difference 
in the value of the state function for the two- and four-vortex solutions diminishes with 
decreasing to. It appears that  the region of attrtlction of the four-vortex solution 
decreases as the outer surface becomes curved. Hence, starting from a converged 
solution on the four-vortex surface in figure 2, the change in to or Dn must be small 
enough to obtain yet another converged solution on the same surface; otherwise the 
solution jumps to the two-vortex surface. 

Another interesting feature of figure 2 is the crossover of the two surfaces in the 
range 0.671 > to > 0 . 5 ~ .  Since this is a numerical study it is not possible to  analyse 
the nature of this critical curve. But there is no doubt that  the four-vortex surface is 
above the two-vortex one for to > 0 . 6 ~ .  This is in agreement with Masliyah (1980) 
for to = T .  For the full circle (i.e. to = 0 . 5 ~ )  the friction coefficient for the four- 
vortex solution is smaller than that for the two-vortex solution. The analysis of 
Dennis & Ng (1982) also indicates that, using an entirely different numerical pro- 
cedure, a similar pattern emerges for the full circle. 

Having established a four-vortex solution for the full circle through gradual changes 
i n  to, i t  is now possible to study the effect of the radius of curvature. However, the 
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FIGURE 2. State-function variation with Dean number and outer surface geometry. 

Rc 
100 
100 
100 
100 
100 
100 
60 
30 
30 
30 
30 
30 
20 
15 
10 
10 
10 
10 

- Q  
500 000 
600 000 
700 000 
800 000 
900 000 

1 060 000 
300 000 
100 000 
117000 
125000 
150 000 
200 000 

80 000 
70 000 
24 000 
30 000 
35 000 
50 000 

Two-vortex solution 
(-Ap- 

D n  C, Re 

86.73 23.07 
99.82 24.05 

112.2 24.97 

7 

- - 
- - 
- - 
- - 

99.88 24.38 
112.40 25.35 
118.0 25.80 
134.4 27.18 
162.6 29.96 
- - 
- - 
116.3 26.11 
136.9 27.73 
- - 
- - 

Four-vortex solution 
?2-- 7 

Dn Cp Re 

No solution 
No solution 

113.6 24.65 
124.0 25.82 
137.0 26.28 
154.8 27.41 
106.7 24.20 

No solution 
113.3 25.15 
119.1 25.56 
136.9 26.68 
170.0 28.66 
134.3 26.65 
166.2 29.00 
117.4 25.86 
138.5 27.40 
155.3 28.51 
201.7 31-30 

TABLE 2. Computed results for full circlc, [ E L0.5.rr, 1.5771 
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FIGURE 3. Contours of stream function and axial velocity for a full circle: 
(a) R, = 100, Dn = 113.6; (b) 100, 154.8; ( c )  10, 155.3; ( d )  10, 201.7. 

- Q  
150 000 
250 000 
400 000 
460000 
500 000 
550 000 
700 000 
900 000 

1 200 000 

Two-vortex solution Four-vortex solution 

D n  

46.63 
71.75 

105.3 

125.9 
1354 
163.15 
197.74 

- 

--7 

Ci Re 

17.68 
19.14 
20.88 

21.83 
22.26 
23.47 
25.00 

- 

Dn C, Re 
No solution 
No solution 

117.6 21.50 
125.0 21.99 
135.0 22.39 
164.0 23.46 
199.4 24.80 
249.8 26.40 

- - 

TABLE 3. Computed results for semicircle, 6 E [0.57r, nl 
(curved outer surface) 
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FIGURE 4. Contours of stream function and axial velocity for a semicircle with a 
curved outer wall: (a)  R, = 30, Dn = 125.0; ( b )  30, 249.8. 

changes in R, must be gradual to retain a four-vortex solution. For example, starting 
with a four-vortex solution for R, = 30 and changing to R, = 10 in one step causes 
the solution to converge to a two-vortex one. To retain the four-vortex pattern R, 
had to be changed in steps as 30,20, 15 and 10. Computed results are shown in table 2 
for R, = 100, 30, 10. To aid in flow visualization, the contours of stream function and 
axial velocity are shown in figure 3 for four cases. Only the four-vortex patterns are 
presented. The size of the secondary vortex in a full circle is small compared to the 
flow area, and the flow in the left half of the duct is basically the same as in a two- 
vortex pattern. This is perhaps the reason for the smaller difference in the state 
function C, Rk for the two solutions. For a chosen R,, increasing Dn (through Q )  
appears to  reduce the size of the secondary vortex. This is more pronounced for the 
case of R, = 10. 

Starting from a converged four-vortex solution for a full circle, and keeping the 
shape of the outer wall as a semicircle (to = 0.5n), the inner wall was gradually 
changed from 1.57~ through 1.47~, 1.2577, 1 . 1 7 ~  to 1.07~. In all cases a converged four- 
vortex solution was obtained. The final geometry (.& = n, fl, = 0.577) corresponds to 
a semicircle with a flat inner wall and a curved outer wall, a case studied by Masliyah 
& Nandakumar ( 1  979). After establishing a four-vortex solution for this geometry, 
the flow parameter was varied, and the computed results are shown in table 3. For 
this geometry, the difference in Cf Re between the two- and four-vortex solution is 
even smaller. The contours of stream function and axial velocity, shown in figure 4, 
are similar to the other four-vortex solutions presented earlier. 

Figures 5-10 show some detail of the flow field for the case of a full circle. For the 
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FICtJRE 5. Variation of tlie radial velocity along the equator for a full circle with R, = 30. 
Two-vortex sohition: --, Dn = 84; - - -, 112.4: - . - .  - ., 134.4. 

01 - I 
0 L l  i - 

,% -10 

1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1  1 1 1 1  

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

X 

FIUURE 6. Variation of the radial velocity along tlie equator for a full circlc with 
Four-vortex solution : --, Dn = 113.3; - - -, 136.9; - * - * - *, 170. 

R, = 30. 

case of two-vortex solutions, figure 5 shows that there exists a region between the 
tube centre and the outer surface (0 < X < 0.4) where the radial velocit,y along t,he 
tube equator decreases as i t  approaches the outer surface. In  this region, there also 
exists an adverse pressure gradient (figure 9).  This is a flow situation inducive to 
separation, and indeed figure 6 shows that radial flow reversal, a change in the sign 
of vX, occurs for the four-vortex solution in the region where the two-vortex solution 
has a decreasing velocity and an adverse pressure gradient. 
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e 
FIQURE 7.  Variation of surface vorticity for a full circle with R, = 30, Q = - 117 000: 

_ _ _ _  , two-vortex solution ; --, four-vortex solution. 

The radial velocity vx( = - wE) along the line of symmetry, 7 = Y = 0, is shown in 
figure 6 for the case of four-vortex solutions. The radial velocity in the secondary 
vortex can be seen to be fairly large compared with that in the primary vortex. For 
a Dean number of 113.3 the maximum values of the radial velocity in the primary 
and in the secondary vortices are of similar magnitude. For the case of the higher 
Dean number of 170 the value of the radial velocity in the secondary vortex is about 
double that in the primary vortex. This indicates that the circulation in the secondary 
vortex is fairly intense. Examination of the contours of the stream function for curved 
rectangular channels with secondary vortices (De Vriend 1981) also indicates that the 
radial velocity in the secondary vortex along the symmetry line can be higher than 
that in the primary vortex. 

Variation of the surface vorticity - W +  is shown in figure 7 .  The surface vorticities 
for the two types of solution show very close agreement over a large portion of the 
tube surface, and only differ in the region close to the outer surface. 

The point of reattachment to the tube surface of the zero streamline that separates 
the primary and the secondary vortices is the point of separation of the secondary- 
flow boundary layer. This separation point is characterized by a zero surface shear 
stress rEq, which is given by the vorticity w$ a t  the surface. Consequently the location 
of the change in sign of the surface vorticity can be used to Iocate the separation point 
a t  the tube surface. For the case of Dn = 1 1  3.3 shown in figure 7 the change in the 
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FIGURE 8. Contours of stream function and axial velocity for a 
full circle with R, = 30, Q = - 117000, Dn = 113.3. 

A 

FIGURE 9. Variation of the pressure drop along the equator and the circumference for the case 
, cir- of a full circle with R, = 30, Q = - 117000. Two-vortex solution: -- , equator; - - 

cumference. Four-vortex solution: - . - .  - *, equator, - - ~ -, circumference. 
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sign of the surface vorticity occurs a t  B = 63". This value is confirmed from a stream- 
line contour plot shown in figure 8, which was produced from a 41 x 41 grid. The 
general features of figure 8 are completely consistentwith those of Dennis & Ng (1982). 

Figure 9 shows the pressure drops along the tube equator and along the tube cir- 
cumference, evaluated using (19) and (20) respectively. The pressure difference 
between the outer and the inner surfaces for the case of the four-vortex solution is 
lower than that for the case of the two-vortex solution. For a given type of solution 
and a t  a constant value of X ,  the pressure values a t  the equator and a t  the circum- 
ference differ little from each other in the region of - 1 < X < 0. Also, in the region 
- 1 < X < 0 the pressure variation along the equator is fairly similar for both types 
of solutions. However, along the tube circumference near the region of the outer 
surface there is a striking difference in the pressure variation between the two types of 
solution. For the case of the four-vortex solution the pressure exhibits a maximum 
in the region of the secondary vortex. This maximum occurs a t  8 = 67", as indicated 
by the upper horizontal axis of figure 9 and the supplementary pressure-variation 
plot of figure 7. For the flow situation presented here a zero surface pressure gradient 
occurs after separation has taken place, and the separation occurs within the region 
of a, positive pressure gradient. This is in accordance with boundary-layer separation 
for flow past non-flat surfaces. 

From figures 3 and 4 of this paper and from the work of Masliyah (1980) and Cheng 
et al. (1976) the flow profile around the stagnation point appears to have a unique 
character irrespective of the geometry. Ignoring the minor fluctuations of the contour 
lines due to the contouring subroutines, the stream-function contour separating the 
two sets of vortices appears to intersect the line of symmetry (7 = 0 )  a t  right angles. 
Close to the stagnation point an expansion for the stream function in terms of 
[ ( X - X , ) ,  Y] up to order 3, and consistent with the conditions 

$ ( X ,  Y = 0 )  = 0, 

VX(X,,O) = - = 0, % IXa,O 

v y ( X ,  Y = 0) = - 

can be written as 
@ ( X ,  Y )  = -aY(X-X , )+bY3+CY(X-XXs)2 ,  

with a, b,  c > 0, and where vx,  v y  are the velocities in the X -  and Y-directions respec- 
tively. The ( X ,  Y)-co-ordinate system has its origin a t  the tube centre. The symbol 
X ,  is"the value of X a t  the stagnation point, which is defined by the location of the 
intersection of the dividing s t reamhe with the line of symmetry. Equation (22) gives 
the dividing streamline as 

a ( X  - X,)  - C(X - X,)2 * 
Y = [  b 1 9  

(23) 

which clearly intersects the line of symmetry a t  right angles. Equation (23) can be 
further simplified by neglecting the second-order effects represented by the second 
t,erm. 
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B 
500 - 

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

(X - X , )  or Y 
FIMJRE 10. Variation of the axial velocity along the equator and along Y ,  X = X ,  

for a full circle with R, = 30, Q = - 117000, Dn = 113.3. 

When (22) is used in the secondary-flow momentum equation in the Cartesian 
toroidal form (Cheng & Akiyama 1970) we can deduce that a t  (Xs, 0 ) )  av,/aY = 0 and 
that a2v+/aY2 > 0. Hence the velocity profile in the direction perpendicular to the 
line of symmetry passing through the stagnation point passes through a minimum. 
Further, from the axial-momentum equation a t  the stagnation point we can deduce 
that a2v+/aX2 < 0. At this point we are not able to ascertain the magnitude of av,/aX 
using the  Navier-Stokes equation, and hence the nature of axial velocity about the 
stagnation point along the equator. However, as the magnitude of the secondary 
velocities is much smaller than the axial velocity around the stagnation point, we 
can expect that for a t  least low-Dean-number flow situations the axial velocity would 
be locally Poiseuille, and an expansion of the form 

where d > 0 and e > 0, would be appropriate. The signs of the coefficients are deter- 
mined from the fact that a2v+/aX2 < 0 and a2v$/8Y2 > 0 a t  the stagnation point 
X = X,. The axial velocity near the stagnation point described by (24) is the shape 
of a saddle. Figure 10 shows the variation of the axial velocity along the tube equator 
and along a line perpendicular to the equator through the stagnation point for a 
Dean number of 113.3 and R, = 30. The axial-velocity profile around the stagnation 
point is clearly that of a saddle point, as predicted by the analysis outlined above. 
A contour plot for the axial velocity and stream function is shown in figure 8 for the 
same Dn and R, values. This plot also shows fairly clearly that a t  the stagnation 
point the axial velocity exhibits a maxima along the line of symmetry and a minimum 
along X = X, (dotted line). Close examination of the flow contours of figures 3 and 4 
also indicates that the stagnation point on the line of symmetry is also a, saddle point 
of v4 for lower values of R, and for a different flow geometry. The axial velocity along 
Y ,  X = X, of figure 10 was obtained using two-dimensional Laplacian-spline inter- 
polation, 

va(X, Y) = v + ( X , , O ) [ I - ~ ( X - X , ) ~ + ~ Y ~ +  ...I, (24) 



Laminar  flow through curved tubes 489 

6.  Conclusions 
Through the use of bipolar-toroidal co-ordinates i t  was possible to show that for 

flow in helical tubes flow bifurcation exists irrespective of the shape of the tube. 
However, i t  is much easier to obtain a dual solution when the outer surface is nearly 
flat. For the four-vortex solutions, the stagnation point on the line of symmetry is a 
saddle point of the axial velocity. 

The authors wish to thank the University of Alberta for the use of computer facilities, 
and the Natural Sciences and Engineering Research Council of Canada for financial 
support. The authors also wish to thank one of the referees for pointing out the exist- 
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